Installation Guide
This guide will help you install JALAN-Sim on your system. There are multiple installation methods depending on your needs and platform.
Quick Installation (Recommended)
The easiest way to install JALAN-Sim is using pip:
pip install jalansim
This will install the pre-built Python bindings with CPU support. For GPU acceleration, see the GPU Support section below.
System Requirements
Minimum Requirements
- Python: 3.8 or higher
- Operating System: Windows 10+, macOS 10.14+, or Linux (Ubuntu 18.04+)
- Memory: 4GB RAM minimum, 8GB+ recommended for batch simulations
For GPU Support
- NVIDIA GPU: CUDA Compute Capability 6.0+ (GTX 1060 or better)
- CUDA Toolkit: 12.2 or higher
- GPU Memory: 2GB+ VRAM recommended
Installation Methods
Method 1: PyPI Package (Recommended)
Install the latest stable release from PyPI:
pip install jalansim
Method 2: Development Installation
For the latest features and development work:
# Clone the repository
git clone https://github.com/damanikjosh/jalansim.git
cd jalansim
# Install in editable mode
pip install -e .
Method 3: Build from Source
For custom builds or platforms not supported by pre-built wheels:
# Clone the repository
git clone https://github.com/damanikjosh/jalansim.git
cd jalansim
# Install build dependencies
pip install cmake scikit-build-core pybind11 numpy ninja
# Build and install
pip install .
GPU Support
JALAN-Sim automatically detects CUDA availability and enables GPU acceleration when possible.
CUDA Installation
-
Install NVIDIA Drivers: Download from NVIDIA's website
-
Install CUDA Toolkit: Visit NVIDIA's CUDA Downloads page and follow the installation guide for your platform. Make sure to install CUDA Toolkit 12.2 or higher.
-
Verify Installation:
nvidia-smi
nvcc --version
Forcing CPU-Only Build
If you want to disable CUDA support (e.g., for CPU-only deployment):
# Set environment variable
export JALANSIM_DISABLE_CUDA=1
pip install jalansim --force-reinstall --no-cache-dir
Common Issues and Solutions
Import Errors
Problem: ImportError: No module named 'jalansim'
Solution: Ensure Python can find the module:
pip list | grep jalansim
# If not found, reinstall:
pip install --force-reinstall jalansim
CUDA Issues
Problem: CUDA not detected despite having NVIDIA GPU
Solutions:
- Verify CUDA installation:
nvidia-smi
andnvcc --version
- Check Python CUDA binding:
python -c "import torch; print(torch.cuda.is_available())"
- Reinstall with verbose output:
pip install jalansim -v
Problem: Out of memory errors on GPU
Solutions:
1. Reduce batch size in simulations
2. Use smaller numeric precision (float32 instead of float64)
3. Monitor GPU memory: nvidia-smi -l 1
Build Issues
Problem: CMake or compiler errors during installation
Solutions:
-
Update build tools:
pip install --upgrade cmake scikit-build-core pybind11
-
Install compiler (if missing):
# Ubuntu/Debian
sudo apt install build-essential
# macOS
xcode-select --install
# Windows: Install Visual Studio Build Tools
Platform-Specific Issues
Windows
- Install Microsoft Visual C++ 14.0+ (Visual Studio Build Tools)
- Use Command Prompt or PowerShell as Administrator for installation
macOS
- Install Xcode command line tools:
xcode-select --install
- For M1/M2 Macs, ensure compatible Python version (3.9+)
Linux
- Install development packages:
sudo apt update
sudo apt install build-essential cmake python3-dev
Virtual Environments
Recommended setup with virtual environments:
# Create virtual environment
python -m venv jalansim-env
# Activate (Linux/macOS)
source jalansim-env/bin/activate
# Activate (Windows)
jalansim-env\Scripts\activate
# Install JALAN-Sim
pip install jalansim
# Deactivate when done
deactivate
Next Steps
Once installed, check out:
- Quick Start Tutorial - Basic usage examples
- API Reference - Complete function documentation
- Examples - Comprehensive code samples
- GitHub Repository - Source code and issues
Getting Help
If you encounter issues:
- Check the FAQ
- Search GitHub Issues
- Create a new issue with:
- Your platform and Python version
- Complete error messages
- Steps to reproduce the problem